
94-775 Unstructured Data Analytics

Nearly all slides by George H. Chen 
with one slide by Phillip Isola

Lecture 12: Wrap up neural net basics; brief 
overview of word embeddings; image analysis 

with convolutional neural nets



Outline
Last few lectures teach fundamental concepts underlying some state-
of-the-art technologies currently used in unstructured data analysis

• High-level idea of word embeddings

You’ll see some practical examples in tomorrow’s recitation!

Next week I’ll give a little bit more intuition for these in our 
coverage of transformers (for handling time series)

• Analyzing images using convolutional neural nets (CNNs)

• Next week: 
wrap up CNNs (if we don’t finish talking about them today), 
text generation using generative pretrained transformers

• Wrap up neural net & deep learning basics

• Today:



Handwritten Digit Recognition

Demo



A brief glimpse at word embeddings
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(Flashback) Do Data Actually Live on 
Manifolds?

Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/word-
embeddings-994x675.png



Word Embeddings: 
Even without labels, we can set up 

a prediction problem!

Hide part of training data and try to predict what you’ve hid!



Word Embeddings: word2vec (2013)

Can solve tasks like the following:

Man is to King as Woman is to Queen???
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Man is to King as Woman is to Queen

Which word doesn’t belong? 
blue, red, green, crimson, transparent

Can solve tasks like the following:



Word Embeddings: word2vec (2013)

Man is to King as Woman is to Queen

Which word doesn’t belong? 
blue, red, green, crimson, transparent

Can solve tasks like the following:



Word Embeddings: word2vec (2013)

Image source: https://deeplearning4j.org/img/countries_capitals.png



Word Embeddings: word2vec (2013)

The opioid epidemic or opioid crisis is the rapid increase in the use of 
prescription and non-prescription opioid drugs in the United States and 
Canada in the 2010s.

Predict context of each word!

Training data point:

“Training labels”:

epidemic

the, opioid, or, opioid



Word Embeddings: word2vec (2013)

The opioid epidemic or opioid crisis is the rapid increase in the use of 
prescription and non-prescription opioid drugs in the United States and 
Canada in the 2010s.

Predict context of each word!

Training data point: or

“Training labels”: opioid, epidemic, opioid, crisis



Word Embeddings: word2vec (2013)

The opioid epidemic or opioid crisis is the rapid increase in the use of 
prescription and non-prescription opioid drugs in the United States and 
Canada in the 2010s.

Predict context of each word!

Training data point: opioid

“Training labels”: epidemic, or, crisis, is

Also provide “negative” examples of words that are not likely to be context 
words (by randomly sampling words elsewhere in document)

These are “positive” (correct) 
examples of what context 

words are for “opioid”



Word Embeddings: word2vec (2013)

The opioid epidemic or opioid crisis is the rapid increase in the use of 
prescription and non-prescription opioid drugs in the United States and 
Canada in the 2010s.

Predict context of each word!

Training data point: opioid

“Negative training label”:      2010s

Also provide “negative” examples of words that are not likely to be context 
words (by randomly sampling words elsewhere in document)

randomly sampled word



Word2vec Neural Net

Linear 
(# nodes = vocab size), 

Softmax

Linear, no bias vector 
(100 nodes)

“opioid”

[0, 0, …, 1, …, 0]
Use one-hot encoding

vector length = vocab size

index of “opioid” in vocab

Want real context 
words (e.g., 
“epidemic”, “crisis”) 
to have high 
probability

Learned weight matrix used 
as word embedding!

(Treat i-th col of weight matrix as word embedding for i-th word)



Word2vec Neural Net

Linear, no bias vector 
(100 nodes)

“opioid”

[0, 0, …, 1, …, 0]
Use one-hot encoding

vector length = vocab size

index of “opioid” in vocab

Learned weight matrix used 
as word embedding!

(Treat i-th col of weight matrix as word embedding for i-th word)

After training the word2vec 
model, treat this layer as fixed!

In PyTorch, can store already 
trained word2vec model (and 

other similar models like GloVe) 
in the Embedding layer

Em
be
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in

g
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“pen”

Tokens/words

word embedding

word2vec

Em
be

dd
in

g

Even though “pen” has multiple meanings 
(e.g., what you write with vs a play pen), 

word2vec would produce the same word embedding for “pen”



What about a word that has 
multiple meanings?

Challenging: try to split up word into 
multiple words depending on meaning 

(requires inferring meaning from context)

This problem is called word sense disambiguation (WSD)

(Flashback)



Modern Word Embeddings Use Context 

“I”

“write”

“using”

“a”

“pen”

word embedding

word embedding

word embedding

word embedding

word embedding

More complicated 
neural net

(such as BERT, which came out in 2018)

You provide a 
whole sentence 

(or a longer 
document)

We’ll talk about this sort 
of idea more next week

Recitation tomorrow goes over 
how to use this technology!



Accounting for image structure: 
convolutional neural nets 

(CNNs or convnets)



filter

Slide by Phillip Isola

Convolution
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Convolution
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Convolution
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Convolution
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Convolution

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

∗ =

Very commonly used for:

• Blurring an image

• Finding edges

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

(this example finds horizontal edges)

Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

convolve with 
each filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

-1 -1 -1

2 2 2

-1 -1 -1

0 -1 0

-1 4 -1

0 -1 0

filters & biases (1 bias number per filter) 
are unknown and are learned!

add bias

add bias

add bias

apply 
activation

apply 
activation

apply 
activation

Conv2d 
layer

Activation layer 
(such as ReLU)

42

-17

99



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d 
(3 kernels, 

each size 3x3), 
ReLU activation

Input

Output images



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d 
(3 kernels, 

each size 3x3), 
ReLU activation

Input

Stack output 
images into a 
single “output 
feature map”

shape: 
3, 

height-2, 
width-2

shape: 
1 (# channels), 

height, 
width



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d 
(m kernels 

each size 3x3), 
ReLU activation

Input

Stack output 
images into a 
single “output 
feature map”

shape: 
1 (# channels), 

height, 
width

shape: 
m, 

height-2, 
width-2



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d 
(m kernels 

each size dx3x3), 
ReLU activation

Input

Stack output 
images into a 
single “output 
feature map”

shape: 
d (# channels) 

height, 
width

shape: 
m, 

height-2, 
width-2



Convolution Layer

Conv2d 
(m kernels 

each size dx3x3), 
ReLU activation

Input

Stack output 
images into a 
single “output 
feature map”

shape: 
d (# channels) 

height, 
width

shape: 
m, 

height-2, 
width-2

∗}

d

}

d

image width
image height

Each filter:



Pooling

• To produce this smaller image, need to aggregate or “pool” 
together information

• Produces smaller image summarizing original larger image



Max Pooling
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Input image

Called “2-by-2” max pooling since this green box is 2 rows by 2 columns

Output image

Take maximum value

3-by-4 max pooling would mean that the green box is 3 rows by 4 columns, etc
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Max Pooling
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Common Building Block of CNNs

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d 
(k kernels), 

ReLU activation

Input

Max Pool 2d 
(applied to each 
image in stack)

stack of images

output stack of 
smaller images



Input

Handwritten Digit Recognition

Flatten Linear 
(512 nodes), 

ReLU

Training label: 6

Loss error

Linear 
(10 nodes), 

Softmax

Categorical 
cross entropy



Input

Handwritten Digit Recognition

Conv2d, 
ReLU

Training label: 6

Loss error

Linear 
(10 nodes), 

Softmax

Categorical 
cross entropy

Max 
Pool 
2d

Flatten



Handwritten Digit Recognition

Conv2d, 
ReLU

Training label: 6

Max 
Pool 
2d

Conv2d, 
ReLU

Input
Linear 

(10 nodes), 
Softmax

FlattenMax 
Pool 
2d

errorLoss

Categorical 
cross entropy

extract low-level visual 
features & aggregate

extract higher-level visual 
features & aggregate

non-vision-specific classifier



CNNs

Demo


